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BI-LEVEL INTEGRATED SYSI"EM SYNTltESIS (BLISS) FOR CONCURRENT
AND DISTRIBUTED PROCESSING

Jaroslaw Sobieszczanski-Sobieski t, Troy I). Altus +_,Matthew Phil ips;, and Robert Sandusky+ +

Abstract

The paper introduces a new version of the Bi-Level

Integrated System Synthesis (BLISS) methods intended

for optimization of engineering systerns conducted by

distributed specialty groups working concurrently and

using a multiprocessor computing environment. The

method decomposes the overall optimization task into

subtasks associated with disciplines or subsystems

where the local design variables are numerous and a

single, system-level optimization whose design vari-

ables are relatively few. ]'he subtasks are fully atttono-

mous as to their inner operations and decision making.

Their purpose is to eliminate the local design variables

and generate a wide spectrum of t_asible designs whose

behavior is represented by Response Surlhces to be ac-

cessed by a system-level optimization. It is shown that,

if the problem is convex, the solution of the decom-

posed problem is the same as that obtained without

decomposition. A simplified example of an aircraft

design shows the method working as intended. The

paper includes a discussion of the method merits and

demerits and recommendations tbr further research.

Nomenclature

AR aspect ratio

B B "black box", another term for a module

c coupling equality constraints

g behavior constraints local to a BB

h equality constraints tantamount to solution of

analysis

ESF engine scale thctor

h cruise altitude

L/D lift to drag ratio

Q system level design variables, IXsh I Y* [w},
a subset of Z

R flight range

RS Response Surface, SRS - sheaf of RS

SCF specific fuel consumption

Sref wing reference area.

T/c airfoil depth

ts the cross-sectional dimensions

*NASA Langley Research ('enter, MS 240, Hampton, VA 23681.
**TheGeorge Washington University, the LaRC campus.

T throttle selling

U local design variables, '_Xloc Y'I, a subset

of Z

U & L upper and lower bounds

Lht horizontal tail location coordinate

M Mach number

w weighting factor in suboptimization objective

function

W weight

Wt total weight, also denoted by TOGW for take-

off gross weight

Xloc design variables local to a BB

Xsh shared design variables affecting directly two

or more Black Boxes (modules), BB

Y* behavior variables input into a BB from other

BB's

yA behavior variables output from a BB, some

elements of yA are designated to be Y*

yA a particular data item selected in a particular

BB output to be the system objective
• • I

Z = ',Xsh ] Xloc [ Y* [ yA} as a vector ol variables in

a not decomposed, combined analysis and

optimization problem

L taper ratio

A sweep angle

(9 effective wing area change due to twist

Superscripts:

a approximate

_' output from a BB

* input to a BB generated by the system

optimizer

Subscripts:

0 optimal

E engine

F fuel

HT horizontal tail

s system objective

T Take-offGross-Weight, TOGW

w wing

tExamples in aircraft design: Xsh wing aspect ralio and sweep
angle: X[oc wing cover panel thickness and a composite ply
orientation angle: Y* and 5.... an elastic dclbrmation that alters the
wing aerodynamic shape, and aerodynamic loads that cause the
wing deformation.
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O. lnmxlucthm

The relentless drive of computer technology toward

e\er higher con_puting speed (Floating Poir, t Owra-

tions Per Second, FLOPS) has enabled solution of

large computational problems encountered in design of

complex engineering systems, e.g., an aircraft, in a

small fraction of time that wils reqt, iredjusl a few years

ago. And yet, it is still not practical to solve such prob-

lems in one monolithic calculation because the number

of design variables is large, the analysis is high fidelity

and it consists of a system of coupled codes. Such

monolithic calct, lation, perhaps, may never become a

routine practice regardless of the computing speed

available because design of complex engineering sys-

tems requires that all sorts of information ranging from

experimental to computational be synthesized by hu-

man judgment. Consequently, it is a common practice

to conduct a design process by collaboration of

autonomous groups of specialists that retain control

over their domains of expertise, and work concurrently

to compress the project elapsed time.

Motivated by this, several methods have emerged

to enable decomposition of the system optimization

into a set of smaller tasks aligned with disciplines or

physical subsystems. Recently, it became evident that

the above methods are natural tbr computing with large

numbers of concurrently operating processors (Mas-

sively Concurrent and Distributed Processing, MCDP),

a new technology now developing a new computational

infrastructure having a potential to support engineering

design at an unprecedented level of effectiveness.

Optimization by decomposition, initiated by

ReE 1, became a key component of the Multidiscipli-

nary Design Optimization 2,3,4, and resulted in a body

of literature much too large to be cited here in lull. A

t_ew representative rel_rences are Reg. 5-15, and 16,17

(the last two are surveys}. Their common thread con-

sists o|'suboptimizations at a lower level, all coordi-

nated by solution of a higher, system-level optimiza-

tion. Their diversity lies in the means that link the two

levels, in the use of variot, s approximations, and in the

definition of the objective function(s) at both levels. As

to the linking, the typical approaches are the sensitivity

of optimum to parameters, the system behavior sensi-

tivity, control over the contributions a suboptimization

makes to the satisfaction of constraints in another

suboptimization, and imposition of targets on the

suboptimization results.

The approximations commonly used in construct-

ing surrogate linear or nonlinear models are often based

on the disciplinary and system behavior derivatives.

Recently, domain-spanning approximatio,ls (I)SA) such

its the Response Surfaces (RS) or Neural Nets (NN)

constructed with the aid of Design of Experiments

(DOE) techniques became popular because they lead to

repetitive but independent calculations that can be per-

formed simultaneously to exploit the MUDP technol-

ogy {e.g., Refs. 8, 11. and 18).

The choice of the objective fimctionls) is limda-

mentally important. It is also difficult because in a

suboptimization the objective ought to reflect local

information combined with the influence of that inlbr-

mation on the system performance, and vice versa at the

system level, while preserving the st, boptimization

autononly.

A structural design of the wing is an example thai

illustrates considerations that underlie the choice of the

objective in a st, bsyslem optimization. Its output in-

cludes structural weight and elastic deformation. Con-

ventionally, the weight would be the objective, How-

ever, the ultimate objective is a measure of the aircraft

system performance. That perlbnnance, m general,

benefits from reduction of weight and drag. Because

increased structural stiffness lowers the elastic wing

drag, it follows that, lbr the system benefit, the wing

structure ought to be designed tbr an optimal combina-

tion of low weight and high stiffness. Furthermore, the

wing structural weight may be lightened by tailoring

the wing detbrmation to redistribution of the aerody-

namic load so as to reduce the root bending moment.

The resulting load distribution is. in general, difl'erent

from the one that minimizes the drag.

The original version of BLISS i0, lu,2_J addressed the

above considerations by computing the system sensitiv-

ity derivatives of the system objective Rmction with

respect to the subsystem design variables and, then,

define a subsystem objective ['unction as a sum of

the subsystem design variables weighted by these

derivatives. The subsequent versions included the

use of RSI_ and a variant specialized tbr structural

optimization2 I.

The key new concept in BLISS 2000 reported

herein is a new formulation for the objective function in

the subsystem optimization and the use of that optimi-

zation to control the subsystem output for the benefit of

the system performance. In the new formulation, the

subsystem optimization objective is a sum of the sub-

system outputs, each output weighted by a coefficient

that is treated as a design variable in the system-level

optimization. This formulation eliminates the costly

system sensitivity and optimt, m sensitivity analyses. It

also enables representation of the subsystem optima at

the system-level by the Response Surfaces prepared
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"off line'" by autonomous, conculTent, and potentially

distributed operations. It is expected that the specialty

groups in charge of these operations work in a MDCP

enviromnent, being fiec to draw on any sources of

intbnnation and to apply any tools of their own choice.

The remainder of the paper defines the BLISS 2000
algorithm first. It tbllows with a discussion and inter-

pretation of the algorithm in qualitative terms, and
oftizrs a theoretical justification of the approach by

demonstrating that the solution obtained by decomposi-

tion also solves the same problem tbrmuh_ted without

decomposition. Remarks about the computational cost

conclude the method description.

A simplified, conceptual-level design problem of a

supersonic business jet illustrates the method and con-

tributes an empirical basis to a concluding assessment

of the method limitations, advantages, and recom-

mended thture developments.

1. The BLISS 2000 Algorithm

The object of optimization in BLISS is a generic

engineering system whose representative example is an

aircraft (Fig. 1). The diagram in Fig. 2 shows a lbw
major disciplines thai form a coupled system in the

aircraft mathematical model. The model is cornprised of

modules, also called Black Boxes (BB), coupled by

data exchanges.

1.1. The Original Problem

Fur any optimization-by-decomposition scheme to

be valid, the solution it generates should also solve the

problem tbrnmlated without decomposition. Therelbre,

introduction of the BLISS algorithm begins with an
all-in-one lbrmulation that combines analysis and opti-

mization of a generic system of which Fig. 2 is an ex-
ample. It reads

FIND: Z 1)
MINIMIZE: F(Z) = Y/'(Z) a)

SATISFY: g(Z) <= 0, for each BB; b)
h(Z) = 0, for each BB; c)
c(Z) = y._yA = 0 d)
ZL <= Z <= ZU, side constraints, e)

OUTPUT: Z,,, Fo t)

In the above, the inequalities g represent the behavior

constraints local to a B Bz, and the equalities h corre-

spond to the solution of the BB governing equations

(the BB inner analysis) s. The output-input equalities c

describe the system inner couplings 4, and in Eq. 1 they

are present for two reasons:

- The input Y* to a particular BB is supplied by

the optimizer instead of being received directly as yA

from another BB, where it would originate in a conven-

tional analysis of a coupled system. Therefore, the

equalities c are needed to ensure that upon convergence

the optimizer-generated Y* is the same as the corre-

sponding Y_".

- The system analysis needs to be solved. Equating

the corresponding pairs Y* and Y" is tantamount to

obtaining a solution.

The formalism of Eq. 1 is known as the Simulta-

neous Analysis and Design (SAND). It brings the h and
c equalities t,nder a single optimization algorithm in

contrast to the more common optimization techniques

that eliminate Y/' and Y* from Z by solving the h an c

equalities for each set of the trial values of Xsh and

Xloc sent out by the optimizer.

1.2. BLISS 2000 Optimization by Decomposition

The BLISS 2000 algorithm separates the BB

suboptimizations from the system optimization. To

introduce the algorithm, this section provides a tbnnal

statement for the optimization at the BB level, tbl-

lowed by definition of the Response Surfaces that link

the above optimization to the system-level optimiza-
tion. and concludes with a tbrmal statement lbr the

latter. The section that follows elaborates on a rationale

lbr the two-level procedure, its theoretical underpin-

nings, and the computational cost considerations.

1.2.1. BLISS Subsystem (Black Box) Optimiza-

tion Problem Repeatedly Executed lbr a Number of

Dispersed Design Points. The design variables Z are

divided into the system level variables {Xsh I Y*} ',m,d

the subsystem level variables {Xloc I Y^} and the fol-

lowing optimization problem is solved lor each BB:

GIVEN: Q= {XshlY* [wl 2)

FIND: U = ',XlociY A} a)
MINIMIZE: f(U) = Y_w, Y", b)
SATISFY: g(U) <= O, for each BB: c)

h(U) = 0, tbr each BB; d)
UL<= U<=UU e)

OUTPUT: Y%, and Xloc. fi

"The weighting coefficients w, in 11 one coefficient

per element of the output vector yA, are appended to
the system-level variables in order to link the BB

:Example: struclural slrcnglh, timil tm lhe aerodynamic pressure

gradient ahmg Ihe wing airfuil chord.

'l'_xamp[e: equalions of the Finile ['.[cnlcnl Analy.',is.

_l',xample: the aerodynamic loads that delorm a wing should be

compulcd tbr the wing defbnncd duc to lhosc loads.
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suboplimization to the system optimization. For rea-

sons to be explained later, the constrained minimunl of

f is not passed to the system optimization: only the
Y'%, values are mmsferred.

The Eq. 2 optimization is executed at it number of

points dispersed in the O-space that belongs to the BB.

The formal Design of Experiments (DOE) techniques

may aid in forming the dispersal pattern to achieve a

reasonable coverage of the domain. From the system

perspective the solution method choice is immaterial
and that choice need not be the same lbr all the BB's.

The specialists in charge of a BB are free to use any

suitable method, even experiments, or a guess.

1.3. Approximate Mtxlel t'_r Optimized Subsystems

Next. a Response Surface (RS) is fitted (or a Neu-

ral Net may be trained) to each of the elements of Y%.

Regarding each RS as a leaf in a sheal, the resulting

data base is a Sheaf of RS (SRS). It constitutes an ap-

proximate model in the Q space of the BB optimized

using the U coordinates, so that

Y"%_ Y_'".(SRS{Q)): and U% = t3:',,(SRS(Q))

for QL <- Q <- QU (3)

In the above, the superscript "a'" denotes approxi-
mate values, and the notation such as Y_% - yA%

(SRS(Q)) means that the approximate values are re-
trieved from precomputed SRS. The bounds on Q. QL

and QU, are the best estimates, accounting for any side

constraints and, also, incorporating the move limits

necessary tbr the ensuing inter-level iteration. The SRS

may be called a domain approximation because it cov-

ers the entire Q space within the above bounds.

In principle, a similar RS approximation could be
constructed for each element of Xloc,,. However, the

resulting volume of data to be stored may be so large as

to make this impractical. If so, Xlocc, can be regenerated
in a manner discussed in Sec. 1.5.

The computational cost of an RS is proportional to

the mtmber of points to be evaluated which grows with
the number of variables. It is desirable, therefore, to

reduce the number of variables in Q by a condensation

technique. Such condensation is imperative tbr those

variables in Q that represent field quantities, e.g., the

field of the pressure loads distributed over the wing,

and the corresponding field of displacements. A con-

densalion of a field data may be accomplished by defin-

ing the field variable P as

p - P(p) (4)

where "the number of the parameters p is made as small
as possible'. The p parameters enter the procedttres as if

they were Y* and yA each p being represented by its
own RS.

When all the BBs are optimized, the functions in

Eq. 3 for each BB are available to the system optimiza-
tion that executes next.

1.4. BLISS System Optimization

The system-level optimization problem is:

GIVEN: a set of SRS. one Ibr each BB 5)

FIND: {Q] = _,Xsh I Y* Iw} a)
MINIMIZE: F(Q)- yA_, b}
SATISFY: c = {y, yA(Q)) = 0; c)

QL <= O <= OF d)
OUTPUT: Ql_, F, e)

Eq. 5 may be solved by any optimization tech-

nique, the data tbr F(Q) - yA_,, and c(Q} for any Q

being retrieved, as per Eq. 3, from the SRS data base.
The efficiency of the technique is not critical because

that data retrieval is nearly instantaneous. As in Eq. I.

c = 0 in the above is tantamount to a system analysis,
thus the BLISS algorithm implements, in effect, the

Simultaneous Analysis and Design method at the sys-

tem level, but not necessarily at the BB-level where the

choice of methods for solving Eq. 2 is autonomous.

1.5. BLISS Iterative Procedure

The retrieval of data from SRS (Eq. 3) in a non-

linear system, is burdened with an error, e = Y_,s -

yA_,q_ whose control requires iteration between Eq. 2

and 5 involving move limits incorporated in QL and

QU in Eq. 5d. These move limits are being adjusted in

each iteration and, occasionally, they may push against

the SRS bounds. That may require the addition of new

points at which to solve Eq. 2, and refitting of the
SRS.

The iterative procedure may also include at its con-

c[usion a retrieval of the optimal X[oc whose elements

might have been stored in form of SRS. If the volume

of such storage is prohibitively large, one may choose

to regenerate the Xloc instead by repeating Eq. 2 while

substituting the latest optimal IXshN*lY_lw_. How-

ever, such regeneration is tantamount to a partial execu-
tion of one additional iteration of the entire BLISS

procedure, theretbre, some of the consistency between

Eq. 2 and 5 is lost resulting in an additional error.

'l!xamplc: l)isplaccments normal to a wing may bc represented by a

function in Ihc chordwise and spanwisc coordinates. Making that

function linear chordwisc and cubic spanwisc reduces the number

of parameters p to only 5.
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The overall, step-by-step recipe for BLISS 2000

optimization algorithm is now written as:

O. Start
1. Initialize Xsh and w, and the U and L bounds

2. Solve equations
a. 11= 0
b. c-0

i.e., pertbrm an initial System Analysis to obtain
starting values of Y* to be considered in
establishing the RS bounds in the next step.

3. Approximate model development tbr each BB. This
step may be done simultaneously lbr all the BB's.
a. Reduce dimensionality of the Q space per Eq. 4.
b. Disperse by a suitable DOE technique a

minimum number of points required to define
an RS approximation in the BB Q-space,
bounded by QL and QU.

c. Solve Eq. 2 m subspace U at the above points
in space Q. This ]'nay be done simultaneously
[br all the points within Q.

d. Fit a Sheaf of Response Surthces (SRS) to the
results of #3b.

e. Verit_' quality SRS by random sampling. If
needed, add new points and discard old points,
and use least square fit (or an equivalent
technique) to improve the SRS quality.

f. After each system optimization (#4 below):
shift, extend or shrink the intervals (QL,QU) tO

avoid excursions beyond the SRS bounds and to
maintain the approximation quality.

4. Solve system optimization Eq. 5 in space Q,
accessing the SRS data per Eq. 3.

5. Check the termination criteria: Exit, or Repeat from

#3 using SRS already available or updated per #3e
and f.

6. Retrieve the optimal Xloe
7. Stop

One execution of the procedure from #3 through 5

is called the major iteration or the cycle.

2. The BLISS Rationale, Theoretical Justification,

and Computational El'ibm

Having the BLISS 2000 algorithm defined, atten-

tion now turns to its underlying rationale, theoretical

justification, and the computational cost of the method.

2. I. Qualitative Discussion of Ratkmale

The system objective F is compt, ted as an element

of Y;' in one of the BB's. The yA from any BB influ-

ences F because of the couplings c. However, one does

not initially know the strength or even the sign of these

influences. Tit(, suhpotimization task/or a BB is, tken,

It) develop a wide ckok'e _?I the BB de.s'ign.v, each

having a di//?renr set 0I ourptcrs }'"_am/ each twing

h'a.vihh' with re.Vwct to lhe ]ocal ¢'on,_'zrainl.v kamt g.

That task is accomplished by using the BB opti-

mization in Eq. 2 merely as a tool to control the BB

output Y_, the weighting coet'l_cienls w in Eq. 2b

acting as parameters of that control. Replacement of the

set of the original vector of the system-level design

variables ',Xsh I Y*] with the vector ',Xsh I Y* ] w',,

thai includes w as additional design variables, resuhs

in a range of the BB designs, {Xloc I Y_'I, at each

point m the IXsh I Y*I space, all the BB designs be-

ing feasible. Availability of a wide choice of these de-

signs in form of SRS enables the system-level optimi-

zation m Eq. 5 to find a set of the BB designs thai are

compatible with respect to c = 0, and generate outputs

Y" whose collective influence minimizes the objective

Eq. 5b.

The above approach to BB suboptimization rests

on the concept of optimizing a component to attain a

desired response. That concept ]nay be illustrated by a

simple example of a cantilever beam of length L and a

square cross-section of the side length "'a", loaded by a

tbrce P at the tip. Consider the beam volume V = a: L,
4, ,.,)the tip displacement d PLS/(3E1), where I a/I..,

and the bending stress at the root s = 6 P L/ta_), as

three outputs that define the beam response. Let's now

choose arbitrarily two items out of these three outputs,

V and d to show how their control may be achieved

using a weighting coelt_cient w inserted in the com-

posite objective function in the optimization tbnnttlated
as

GIVEN: constants of E - Young's modulus;
L - beam length: and s_, - allowable
stress;

FIND: dimension a
MINIMIZE: f =V +wd
SATISFY: s <= s:,

Substituting the formulas for V and d into t; and

setting dffdw = 0 yields

_, = max(('1 w _]" (6PL/s,,'t _));

V0 = C2 w d_,= C3 w ; V,,/d,, =

where CI and C: are constants comprising pararneters
P, L, E. and s_. This solution shows how w controls

the ratio of the two response outputs.

One should acknowledge that a similar control of

the outputs ]nay be accomplished by other means. For

example, the Collaborative Optimization method (e.g.,

Refs. 9 and 11 ) achieves that control by imposing tar-
gets Y' on the output variables yA and minimizing the
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discrepancy f- _ (Y_ - yA): between yl and Y_" as the

objective fimction in Eq. 2 to generate the optimal Y%
Unlike BLISS 2000, CO includes the Xsh inputs as

design variables in U in Eq. 2 together with Xloc, and

imposes the largets on Xsh to generate optimal Xsh in

addition to optimal XIoc. The w variables are absent in

the CO formulation as their role is assigned, in effect,

m the target variables, in both the CO version reported

in Ref. I I and in BLISS 2000 herein, the optimal re-

sults are stored for the use in the system-level optimiza-
lion in form of RS.

The formulation with targets Y_ in place of w ap-

pears to be a viable alternative in BLISS. It could be

combined with stating the objective fimclion in Eq. 2b

in a Goal Progmming style22 us f = Y_ (d' + d)
where d' and d- measure the overachievement or

underachievement of the targets. Examination of merits

of the above alternatives is beyond the scope of this

paper.

"_"_ Theoretical Justification

The following chain reasoning shows that a solu-

tion of the set of Eq. 2 and 5 satisfies the original prob-

lem described by Eq. l:

I. Solution of Eq. 2 satisfies constraints h = 0 and

g <= 0 present in Eq. I.
2. Solution of Eq. 5 satisfies constraints c -- 0 present

in Eq. I.
3. Solution of Eq. 2 and the subsequent generation of

SRS, Eq. 3, renders Y_' = Y"",(_Xsh I Y* i w}),
and Xloc = Xloc(lXsh [ Y* I w}). If the problem is
convex, the above relations are unique for each
vector element (single-valued functions).

4. Owing to the above relations, the space of
(Xsh ] Y* ] wl, searched in Eq. 5, maps uniquely
on the original space of IXsh I Xloc I Y* I Y_'I,
searched in Eq. I, because Xsh and Y* define both
spaces, and Xloc and Y" are turned into functions
of IXsh I Y* Iw', per #3 above.

5. The existence of the mapping of the space ofEq. 5
onto the space of Eq. 1 together with satisfaction of
the constraints g, h, and c, assures that the solution
of the sequence Eqs. 2, 3, 5 satisfies also Eq. 1,
subject to the caveats that tbl[ow.

Caveat I : If the problem of Eq. 1 has local minima

(a non-convex problem), then the solutions of Eqs. 2,

3, 5 may not arrive at the solution of Eq. I even when

starting from the same initial point because the algo-

rithmic difl_erences may result in different search path

being traced.

Caveat 2: If the SRS were error free and wide

enough to contain the solution to Eq. 5, a single execu-

tion of the seqt,ence Eq. 2 Eq. 5 would suffice.

Otherwise, the sequence has to include the SRS updates
and be iterated to reduce the error _ = Y% - yA%.

2.3. Computational Effort

In BLISS 2000 the SRS data may be generated

simt.ltaneously and independently at distributed sites.

Furthermore, this data generation does not require any

modifications to the existing codes. Each code involved

in Eq. 2 may simply be replicated over many proces-

sors and executed with different inputs Q. It is a classic

case of the so-called coarse-grain parallelism in comput-

ing. Thus, there is no additional t,p-front reprogram-

ruing cost although there is some cost penalty in con>

munication and bookkeeping.

The BLISS computational cost as measured by the

elapsed time is primarily in repetitive execution of

[iq. 2 that for a large-scale problem overshadows the

cost of Eq. 5. For a quadratic polynomial RS in the Q

space of N dimensions the minimum number of points
is M = O(N2/2). However, one may choose to increase

the number of points to M2 = Mj M, MI > 1, to

improve the RS accuracy, in which case the RS may be

fitted by means of the method of least squares (or an

equivalent) with the added benefit of smoothing that

lessens the probability of entrapment in a local mini-

mum. Furthermore, the procedure of solving the

sequence Eq. 2-5 requires a problem-dependent number

of cycles, NQ, so the total number of points increases
to O(NQ, N2/2). Consequently, the quadratic RS may

be impractical beyond N = 12 to 20 in applications

where the elapsed computing time per point is substan-

tial and all calculations are sequential. Therelbre, the

t,se of BLISS 2000 in large-scale applications depends

on the technology of Massively Concurrent and Dis-

tributed Processing (MCDP) for compressing M opera-

tions into the elapsed time of one. Such compression
not only extends radically the RS limits of practicality

now but also provides for their further relaxation with

the progress of the MCDP technology.

Another way to circumvent the "curse of dimen-

sionality" is to settle for a linear form of RS that makes
M -= O(N). Then, the iterative process of solving the

sequence of Eq. 2-5 becomes similar to the sequential

linear programming (or its more refined version of the
sequential approximate programming23). Many years of

experience of the above practice with diverse applica-

tions indicates that the number of times, NA, the ap-

proximations must be refreshed in these sequential

processes depends on the class of application but stays

independent of N and reasonably small within that
class. For ins'lance23, 24. in structural optimization

dominated by membrane stresses, typically. NA - 5
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to 10,andit risesto 20 to 30 wherebendingis
prevalent24.Thetotalnumberof pointsto beevaluated
in sucha processisof O{NA,N). A recentnumerical
evidenceattestingeltbctivenessof the linearRSin a
sequentialapproximaleoptimization is provided in
Refs. 25 and 26 where the linear RS is t,sed in an

MCDP environment, and in Ref. I1 where it is an

enhancement in CO,

Consequently, substituting NA and NQ expected

for a particular BB and checking whether O(NA N) <
O(NQ, N-'/2) is tree constitt,te an important factor in

the choice between the quadratic or linear RS for that

particular BB.

Another factor is an organizational one. The RS

refreshing operations (Eq. 2) need to be completed at

the outset of each cycle so a degree of coordination

among the groups performing these operations is neces-

sary. The cost of thai coordination adds to the cost of

the entire procedure. On that score, the higher order RS

are st,perior because NQ is likely to be smaller than
NA, hence, the coordination is needed less often.

3. A Numerical Example

A Supersonic Business Jet (SBJ) shown in Fig. 1

is a numerical example tbr the BLISS 2000 algorithm.

It the same case that was used in Refs. 10, 19, and 20

in the overall layout, but sufficiently different in detail

to make the results incomparable. Ref 27 completely

documents the present case and its relation to the previ-

ous one. The model of the aircrat_ system is reduced to

four BB's shown in Fig. 3 which shows also their data

exchanges in a standard format of the data dependence

matrix, also known us the n-square format. That format

depicts the modules strung along the diagonal. Each

module accepts input vertically from above or below,

and outputs horizontally, left or right.

The BB-structures is a plate representation of the

wingbox, connected to a rigid beam model of the fuse-

lage to which a horizontal tail is attached. The wingbox

strength (stress and local buckling constraints) and

stifthess accounts for the wing sandwich covers. The

wingbox volume is the fuel tank volume. The BB-

aerodynamics calculates lilt distribution sensitive to the

wing trapezoidal geometry changes and to the local

variations of the angle of attack generated by an aerody-
namic twist and by the elastic deformation. This B B

includes also computation of the drag accounting lbr

the wave drag, and accounts for the trim constraints by

performing a trim analysis involving the tail volume.

The BB-power simulates the propulsion by interpola-
tion of a look-up table thai contains data on the thrust

and specific fuel consumption as functions of the Mach

number and altitude. Finally, the BB-perfonnance

computes the Ilight range by the Bregt, et equation.

The system objective is the range under constant

TOGW. The system design variables govern the geome-

try and include the Much number and altitude. The
local variables are: in structt.res, the cross-sectional

dimensions of the sandwich wing covers at several loca-

tions over the wing; in aerodynamics, the horizontal

tail sweep angle, wing and horizontal tail location co-

ordinates; and in Power the throttle setting. Table I
provides more information tbr the input, output, and
the RS statistics for the BB's. The field variables of

aerodynarnic loads and the wing twist were condensed

to their distribution parameters.

The n-square diagram in Fig. 4 corresponds to the

one in Fig. 3, except that it shows the system level

optimizer as the sole input source for all BB's. Each

BB in that diagram is now a SRS representation of that

BB suboptimization. The c-constraints occur at the data

channel intersections marked by circles.

The design points tbr construction of RS are placed

using the D-optimal technique from the Design of

Experiments methodology. The RS are quadratic poly-

nomials. As the procedure progresses, they are being

periodically updated in order to keep them centered in

the Q space around the latest optimal solution, to pre-

vent the optimal solution to remain lodged against the

RS boundary, and to reduce the RS span as the proce-

dure homes on the system optimum.

The BB analysis codes are in FORTRAN, while

MATLAB Optimization Toolbox is the tool for opti-

mization at the BB level and the system level. The

main program that executes the entire procedure is also
written in MATLAB.

In this example, BLISS 2000 manipulates the sys-

tem and local design variables so as to adjust the wing

structural weight, engine weight, aerodynamic drag,

fuel volurne, and fuel consumption so as to maximize

the range.

The results are very voluminous27 so only a small

but representative sample is displayed herein in Table 2

that shows how the objective and a few local and sys-

tem variables were changing over the BLISS cycles. In
this case, the result variations diminish to the level

commensurate with the accuracy of the analysis typi-
cally al_er 6 or 8 cycles, hence the number of cycles

is set to ten. The data are shown normalized by their

values obtained in Iteration 10; the latter are also pre-

sented in the right-most cohtmn. The BB internal op-
timization histograms are not shown because the local
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t)ptimization performance has no bearing on the overall

convergence of the method owing to the BB autonon_y.

Table 2 includes the objective function of the flight

range. At a cycle number, the table shows the range

predicted by RS, Rrs, used in that cycle and the range

actually computed, Ran, at the outset of the next cycle.

['hc two values converge into a complete agreemen! in

five cycles. The convergence is oscillatory partially due

to the initial dilt_rences of the RS-predicted and actual

values and partially duc to the search of a compromise

among the multitude of trade-offs at two levels account-

ing for constraints.

The method translbrms the initially infeasible de-

sign to one whcrc all the constraints are satisfied and

the objective is improved by 47 %. That improvement

value is significant merely as a metric of performance of

the method in this particular test but the range final

wdue must not be interpreted as realistic. The analysis

scope and fidelity, and completeness of the set of vari-
ables and constraints would have to be much higher tbr

such interpretation.

4. Concluding Remarks

BLISS 2000 method is intended specifically tbr

support of design projects that require collaboration of

autonomous, distributed specialty groups and exploita-

tion of the Massively Concurrent and Distributed Proc-

essing (MCDP) technology.

The method decomposes the overall system opti-

mization into subotimizations associated with the spe-

cialty groups. Response Surthces approximate the

suboptimization optimal results in the coordinating,

systern-level optimization that, provably, leads to the

same solution, subject to the approximation errors, that

would have been obtained without decomposition. An

exarnple of a simplified, conceptual design of an aircraft
illustrates the method.

The proof-of-the-concept testing reported herein

showed BLISS performing as intended. Preliminary
assessment of the method merits and demerits follows.

The BLISS 2000 perfonrlance depends on the qual-

ity of approximation of the subsystem optimization

results as fimctions of the system-level design variables

and coupling variables. The number of times these ap-

proximation need to be updated and the number of new

design points in these updates are problem dependent.

Assessment of the approximation errors is a thctor in

choosing between the linear or higher order approxima-

tions for the individual modules, and in deciding on

the frequency of the approximation updates.

BLISS 2000 tends to generate a large amount of

cornputing and voluminous intenllediate data. On the

other hand it simplifies the entire procedure conceptu-

ally to reduce the human effort and time. This appears

to be a cost-effective trade-off, considering that comput-

ing gets less expensive all the time while the labor

costs grow. The elapsed time consumed by the BLISS-

generated computation is compressed by the MCDP

technology. That technology has established itself the

futttre of computing in science and engineering and

BLISS being intrinsically coarse-grain parallel is posed

to exploit that technology and grow with it.

The BLISS method performs best in applications

that decompose into subsystems with numerous local
design variables and constraints leaving a relatively

small number of design variables at the system level. A

nearly complete autonomy of the operations in the sub-

systems is the key BLISS advantage that enables full

utilization of the local knowledge and control over the

budget and task time.

Thc system level-optimization benefits from nearly

instantaneous response of the approximations, therefiare,
it does not call for any particularly high sophistication

or efficiency of the search technique.

Further research is recommended to determine how

much BLISS could reduce the elapsed project time, and
whether it would benefit from the alternative lbrmula-

tions of the module-level optimization, use of the linear

instead of quadratic fore1 of the Response Surlaces, and

approximations other than Response Surfaces. It is

through generation of experience in large-scale practical

applications that gtfidelines for fi_rther gains in effi-

ciency and accuracy will develop.

5. References

1. Schmit, L.A.. and Ramanathan. R.K.: Multilevel

Approach to Minimum Weight Design Including

Buckling Constraints. AIAA J., Vol.16, No.2,

pp.97-104.

2 Sobieszczanski-Sobieski, J.: Multidisciplinary De-

sign Optimization; an Emerging New Engineering

Discipline; in Advances in Structural Optimiza-
tion, Jose Herskovits (Ed.); Kluwer Academic

Publ. 1995; pp.483-496.

3. Cramer, E.J,; Dennis. J.; Frank, P.D.: Lewis, R.

M.; and Shubin, G.R.: Problem Formulation for

Multidisciplinary Design Optimization; SIAM

Journal on Optimization, Vol.4, No.4, 1994,

pp.754-776.

8
American Institute of Aeronautics and Astronautics



4. Alexandrov, N. (cd): and tlussaini. M.Y.(cd):

Multidiscipiinary design Optimization State of

tile Art; Proceedings of the ICASE/NASA Langley

Workshop on Multidisciplinary Design Optinliza-
tion, SIAM, 1997.

5 Sobieszczanski-Sobieski, J.: A Linear Decomposi-

tion Method for Large Optimization Problems;
NASA TM-8324g, 1982.

6. Sobieszczanski-Sobieski, J.: Optimization by De-

composition: A Step from Hierarchic It) Non-

Hierarchic Systems" Proceedings of NASA/USAF

Symposium on Multidisciplinary Optimization:

NASA CP-3031, Sept. 1988.

7. Renaud, J., and Gabriele, G.: hnproved Coordina-

tion in Nonherarchic System Optimization; AIAA

J., Vol.31, No. 12, 1993, pp.2267-2373.

Wujek, B.A.; Renaud, J.E.; Batill, S.M.; and

Brockman, J.B.: Design Flow Management and

Multidisciplinary Design Optimization in Applica-

tion to Aircraft Concept Sizing. 34 '_' AIAA Aero-

space Sciences Meeting, Reno, Nevada, Jan. 1996,

Paper No. AIAA 96-0713.

Braun, R.D., and Kroo, I,M,: Development and

Application of the Collaborative Optimization Ar-

chitecture in a Multidisciplinary Design Environ-

ment, in Multidisciplinary Design Optimization:
State of the Art, Proceedings of the ICASE/NASA

Langley Workshop on Multidisciplinary Design

Optimization, ed.: N. Alexandrov and M.Y.

Hussaini, 1997, SIAM; pp.9g-116.

10. Sobieszczanski-Sobieski, J.; Agte, J.S.; and
Sandt, sky ,It., R.R.: Bilevel Integrated System

Synthesis: AIAA J., Vol.3b;, No.I, Jan. 2000,

pp. 164-172.

I1. Sobieski, I.P.: and Kroo, I.: Collaborative Optimi-

zation Using Response Surface Estimation; A1AA

J., Vo1.38, No.10, Oct. 2000, pp.1931-1938.

12. Papalambros, P; Michelena, N.: Model-based Par-

titioning in Optimal Design of Large Engineering

Systems: in Multidisciplinary Design Optimiza-

tion: State of the Art, Proceedings of the

tCASE/NASA Langley Workshop on Multidisci-

plinary Design Optimization, ed.: N. Alexandrov

and M.Y. Hussaini, 1997, SIAM; pp.g8-116.

13. Wagner, T.; and Papalambros, P.: A General

Framework h_r Decomposition Analysis in Opti-

mal Design: in Advances in Design Automation,

(ed. Gilmore, B.J.) Vol.2, pp.315-325; ASME,
NY., 1993.

9,

14. Kodiyalam, S.; Sobieszczanski-Sobieski, J.:

"'Multidisciplinary design optimization some

formal methods, framework requirements, and ap-

plication to vehicle design"; International Journal

tbr Vehicle Design, Vol.25, No.l&2 Special Issue

2000, pp.3-22.

15. Sobieszczanski-Sobieski, J.: Optimization by De-

composition in Structural and Multidisciplinary

Optimization; in Optimization of Large Structural

Systems, Vol.1, pp. 197-233, sec. I : (ed. Rozvany,
G.I.N.); NATO ASI Series: Series E: Applied
Sciences - Vol.231. Kluwer Publ. 1993.

16. Bailing, R.J.; and Sobieszczanski-Sobieski, J.:

Optimization of Coupled Systems: A Critical

Overview of Approaches; AIAA J.. Vol.34, No.l,

pp.6-17; 1996.

17. Sobieszczanski-Sobieski, J.. and Haftka, R.T.:

Multidisciplinary Design Optimization: Survey of

Recent Developments; Structural Optimization,

Vol. 14, No.I, Jan. 1997, pp.l-23.

18. Kodiyalam, S.: and Sobieszczanski-Sobieski, J.:

Bi-Level Integrated System Synthesis with Re-

sponse Surfaces; AIAA J., Vol.38, No.g, Aug.

2000, pp. 1479-148.

19. Agte, J.S.: Sobieszczanski-Sobieski, J.; a3d

Sandusky, R.: Supersonic Business Jet Design

Through Bi-Level Integrated System Synthesis: pa-

per SAE 1999-01-5622; The SAE World Aviation

Congress, San Francisco, CA., Oct. 19-21, 1999.

20. Sobieszczanski-Sobieski, J.: Emiley, M.S.: Agte,

J.: and Sandusky, R., Jr.: Advancement of Bi-level

Integrated System Synthesis (BLISS): AIAA 2000-

0421: AIAA 38 'h Aerospace Sciences Meeting,

Rent), Jan. 2000: also published as NASA TM
2000-210305.

21. Sobieszczanski-Sobieski, J.; Kodiyalam, S. :
BLISS/S: A New Method for Two-Level Structural

Optimization: AIAA 99-1345: and in Structural _md

Multidisciplinary Optimization j.. 2 I/1 pp. 1-11.

22. Rao, S. S.: Engineering Optimization - Theory

and Practice; J. Wiley & Sons, 1996, Ch. 12.3.6.

23. Haflka, R. T.: and Gurdal, Z.: Elements of Struc-

tural Optimization; Kluwer Academic Publ., 1992.

Ch. 6.4., and example p. 194.

24. Schmit, L. A.: Structural Synthesis - Genesis and

Development;AIAAJ.,Vol. 19, No. 10, Oct. 1981,

pp. 1249-1263.

25. Yang, R-J; Gu, L.; Tho, C. (Ford Motor Co,
Dearborn, MI): and Sobieszczanski-Sobieski, J.:

Multidisciplinary Design Optimization of a Full

9

American Institute of Aeronautics and Astronautics



Vehiclewith High PerfonnanceConaputing.
AIAA-2001-1273:42'"l AIAA Structures,Dynam-
ics,andMaterials Conference; Seattle, WA: April
200 I.

26. Sobieszczanski-Sobieski, J.: Kodiyalam, S.; and

Yang, R-J.: Optimization of a Car Body under
('onstraints of Noise, Vibration, and ttarshness

(NVH), and Crash: AIAA 2000-1521. Journal pub-

licalion : Structural Optimization: Vo1.22, No.4:

November 2001; pp.295-306.

27. Altus, T.D.: A Response Surlhce Methodology lbr

Bi-Level Integrated System Synthesis (BI,ISS);

NASA/CR-2002-211652: NASA Langley Research
Center.

Table I. Variables Z, Y*, Y^ and dimensionality dalai for RS

Input Variables Number Number
BB Output y^

Z Y* w of Inputs _of Points

1. W-r t/c, ARw, Aw, wl(2)
1. Structures 2. WF S_EF, Srrr, L, WE 11 78

3. O AR+Ir, 7_ wl(3)

4. L t/c, h, M, ARw, WT, ®, w2(l)
2. Aero 5. D Aw, SReF, SHT, 14 120

6. L/D ARnT, _ ESF w2(3)

1. SCF

3. Power 2. WE h, M D w3( 1 ) 5 21

3. ESF w3(3)

WT,

4. Performance 1. Range h, M Wv, 6 28
L/D,

SFC

Table 2. A sample of data changing over 10 BLISS cycles

q/de ] 0 1 _1 el 31 4 I 5J 6 I 7 I 8 i 9 I I0

Normalized b_' Value from Cgcle I 0
M 1.08 1.01 1.07 1.10 1.05 !1.03 1.00 0.99 1.00 0.99 1.00

TOGW(lb) 1.06 1.11 1.19 1.12 1.05 1.02 1.02 1.OI 1.01 1.00 1.00
Sreflff'2) 0.69 0.35 0.77 0.83 0.77 !0.72 0.85 0.86 0.93 0.98 1.00

ESF 1.94 1.22 0.90 1.05 1.10 !1.03 0.97 1.00 1.03 1.01 1.00
t/c 2.16 2.89 2.89 1.60 1.69 1.55 1.31 1.26 1.12 1.02 1.00

tsl(in)" 1.04 1.03 1.05 1.07 1.04 1.00 0.98 1.00 0.99 0.99 1.00

T(%) 1.70 1.03 1.52 1.22 1.10 1.07 1.01 0.98 1.00 1.00 1.00

Lht(%MAC) 0.71 0.61 1.00 1.00 0.60 0.76 1.00 1.00 1.00 1.00 1.00
_vl 0.00 0.00 0.48 1.19 1.90 1.67 2.14 1.43 1.10 1.00 1.00

w3 0.00 1.79 1.61 1.02 1.16 0.89 1.25 1.02 1.00 1.02 1.00

Rrs 0.77 0.93 1.20 0.76 0.91 0.97 0.99 0.98 0.99 1.00

Ran(nm,) 0.68 0.91 1.07 0.77 0.91 0.97 0.99 0.98 0.99 1.00

:'sandwich caliper thickness of the wing upper cover inboard segment.

Value from

C),cle I 0
1.663

31342

578

0.517

0.035

3.840

20.6

350

0.210

0.560

5247

5247
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Fig.1.A genericSupersonic
in BLISS.
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Fig. 3. Tes! case coupling data llow.

Aerodynamics

Propulsion

Structures 1

Performance

Fig. 2. An example of a few principal disciplines in an
aircraft treated as a system.

System ] Z and Y* Issued

°ptimizer [ 9, I I

>" m_ i Propulsior

I
Performance
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Fig. 4. System optimizer is a source of all BB inputs Z

and Y*, BB's return Y'_ to the optimizer (Table I
shows yA, Z, and Y*).
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